Qus : 3 MCA NIMCET PYQ 2024 4 If (4, 3) and (12, 5) are the two foci of an ellipse passing through the
origin, then the eccentricity of the ellipse is
1 √ 13 9 2 √ 13 18 3 √ 17 18 4 √ 17 9 Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2024 PYQ Solution
Given: Foci are (4, 3) and (12, 5), and the ellipse passes through the origin (0, 0).
Step 1: Use ellipse definition
$PF_1 = \sqrt{(0 - 4)^2 + (0 - 3)^2}
= \sqrt{25}
= 5$
$PF_2 = \sqrt{(0 - 12)^2 + (0 - 5)^2}
= \sqrt{169}
= 13$
Total distance = 5 + 13 = 18 ⇒ 2 a = 18 ⇒ a = 9
Step 2: Distance between the foci
2c = \sqrt{(12 - 4)^2 + (5 - 3)^2} = \sqrt{64 + 4} = \sqrt{68} \Rightarrow c = \sqrt{17}
Step 3: Find eccentricity
e = \dfrac{c}{a} = \dfrac{\sqrt{17}}{9}
✅ Final Answer: \boxed{\dfrac{\sqrt{17}}{9}}
Qus : 4 MCA NIMCET PYQ 2024 2 The equation 3x^2 + 10xy + 11y^2 + 14x + 12y + 5 = 0 represents
1 a circle 2 an ellipse 3 a hyperbola 4 a parabola Go to Discussion MCA NIMCET Previous Year PYQ MCA NIMCET NIMCET 2024 PYQ Solution
Rule for Classifying Conics Using Discriminant
Given the equation: Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
Compute: \Delta = B^2 - 4AC
? Based on value of \Delta :
Ellipse : \Delta < 0 and A \ne C , B \ne 0 → tilted ellipse
Circle : \Delta < 0 and A = C , B = 0
Parabola : \Delta = 0
Hyperbola : \Delta > 0
Example:
For the equation: 3x^2 + 10xy + 11y^2 + 14x + 12y + 5 = 0
A = 3 , B = 10 , C = 11 →
\Delta = 10^2 - 4(3)(11) = 100 - 132 = -32
Since \Delta < 0 , it represents an ellipse .
[{"qus_id":"3918","year":"2019"},{"qus_id":"3910","year":"2019"},{"qus_id":"9445","year":"2020"},{"qus_id":"10672","year":"2021"},{"qus_id":"10698","year":"2021"},{"qus_id":"11156","year":"2022"},{"qus_id":"11622","year":"2024"},{"qus_id":"11659","year":"2024"},{"qus_id":"10198","year":"2015"},{"qus_id":"10479","year":"2014"}]